Distinguished Lecturer & Social Time at Play Arcade and Kitchen in Mayfield Heights

Loading Map....

Date/Time
Date(s) - 05/16/2017
5:00 pm - 9:00 pm

Location
Play Arcade and Kitchen

Categories


In celebration of our recent and soon to be graduating IEEE Student Members, and also our Young Professional Members, the IEEE Cleveland Section is holding a joint social event/distinguished lecture at Play Kitchen and Arcade in Mayfield Heights on May 16, 2017.  The venue is located at 5900 Mayfield Rd, Mayfield Heights, OH 44124.

This social event and talk are being sponsored by the IEEE Electron Devices Society, IEEE Young Professionals Affinity Group, and IEEE Cleveland Section.

All member grades are encouraged to attend this event – Student Members through Life Members!  Due to meeting room and budgetary constraints, we have limited spots for this event.  Please RSVP below to reserve your spot before they fill up!  RSVP DEADLINE of Noon on May 13.

The schedule for this event is as follows:
5:00pm – 6:00pm – Checkin and Social Time
6:00pm – 6:30pm – Buffet Dinner
6:30pm – 7:30pm – EDS Distinguished Lecture – Dr. Renuka Jindal – From millibits to Terabits per second and Beyond – Over 60 years of Innovation
7:30pm – 9:00pm – Social Time  (Dr. Jindal is on the board of directors for IEEE and will also be available during this time to solicit feedback from the attendees regarding the current and future IEEE)

1 CPD hour will be available.

This event will feature a complimentary burger buffet with salad and various cookie options.  There will be complimentary soft drinks.  Attendees over the age of 21 will be provided with one complimentary drink ticket for the bar.  Additional drinks can be purchased with cash thereafter.

The speaker at this event will be Dr. Renuka Jindal, an Electron Devices Society Distinguished Lecturer and IEEE Board of Directors Member!  Dr. Jindal will be recounting “From millibits to Terabits per second and Beyond -Over 60 years of Innovation”.

ABSTRACT
The unfolding of the Information Age has led to a plethora of products and services enriching our lives and skyrocketing world economy. This advancement in telecommunications has been driven by both hardware and software. The circuit complexity, as portrayed by the number of transistors on the silicon chip, continues to double every 24 months as pointed out by Moore’s law. On the other hand, the communication bandwidth had doubled every 18 months. This meteoric increase in bandwidth has been made possible by three key developments over the last 60 years. The first of these was the demonstration of the point-contact bipolar transistor in 1947 by Bardeen, Brattain and Shockley which started the solid-state revolution. This was followed by the demonstration of the MOS Field-Effect-Transistor by Kahng and Atalla in 1960. The second key contributor to this bandwidth explosion was the development of Information Theory as enunciated by Claude Shannon in 1948. Once in place, this provided a firm theoretical underpinning to understand the trade-offs between signal-to-noise ratio, bandwidth and error-free transmission in the presence of noise. The third key development which ignited this fire was the invention of laser by Schawlow and Townes in 1958 with a working demonstration in 1960. Serious efforts to transform this understanding into high-performance lightwave systems started by the designing of integrated electronics using MOS technology around 1980. However, initial attempts at boosting receiver sensitivity and data-rates was seriously hampered by a lack of understanding of the noise performance of the MOS device. Speaker’s contributions in this area not only led to a deeper understanding of the noise behavior of MOS devices but also produced an order of magnitude improvement in their performance. This set the stage for MOS to become the technology of choice for lightwave and now low-cost wireless terminal applications. The ubiquitous nature of cell phones is a testimony to these key developments in the early 80’s. In this talk, starting from smoke signals at millibits per second, we will trace these events from a historical perspective to see how these key technologies lead to the development of modern wireless and optical networks of terabit capacity with petabits looming in sight.

BIO
Renuka P. Jindal (S’77-M’81-SM’85-F’91) received his Ph.D. degree in Electrical Engineering from University of Minnesota 1981 with minors in Physics and Materials Science. Upon graduation, he joined Bell Laboratories at Murray Hill, New Jersey. His experience at Bell Labs for over 22 years bridged both technical and administrative roles. On the technical side he worked in all three areas of devices, circuits and systems. Highlights include fundamental studies of noise behavior of MOS devices with channel lengths in the few hundred nanometers regime. His contributions led to almost an order of magnitude reduction in the device noise. Over the years, this has made MOS the technology of choice for broad-band fiber-optics and narrow-band wireless base station and terminal applications including cell phones and pagers. He also designed and demonstrated high-performance single-chip gigahertz-band RF integrated circuits for AT&T’s Metrobus lightwave project. He researched the physics of carrier multiplication and invented techniques for ultra-low noise signal amplification and detection in terms of novel devices and circuits based upon a new principle of random multiplication and optoelectronic integration. On the administrative side, Dr Jindal developed and managed significant extramural funding from federal agencies and independent Lucent Technologies business units. He was solely responsible for developing and deploying a corporate-wide manufacturing-test strategy in relation to contract manufacturing for Lucent Technologies. In addition, he established and taught RF IC design courses at Rutgers University. In Fall 2002 Dr. Jindal accepted the position as William and Mary Hansen Hall Board of Regents Eminent Scholar Endowed Chair at University of Louisiana, Lafayette, Louisiana. There, he continues to teach and undertake fundamental research in the area of random processes, wireless and lightwave device, circuits and systems. He is also very active in professional activities in conjunction with the IEEE and is Electron Devices Society distinguished Lecturer. He has also participated in ABET activities as an evaluator for Electrical Engineering programs at institutions in the United States.

In 1985 Dr. Jindal became a senior member of IEEE. He received the Distinguished Technical Staff Award from Bell Labs in 1989. In 1991, he was elected Fellow of the IEEE for his contributions to the field of solid-state device noise theory and practice. In December 2000 he received the IEEE 3rd Millennium Medal. From 1987 to 1989 he served as editor of the solid-state device phenomena section of IEEE Transactions on Electron Devices. From 1990 to 2000 he was Editor-in-Chief of the IEEE Transactions on Electron Devices. From 2000 to 2008 he served as the Vice-President of Publications for the IEEE Electron Devices Society (EDS). In December 2007 he was voted in as President-Elect of EDS. From 2010 to 2011, Dr. Jindal served as the President of IEEE Electron Devices Society, and thereafter as the EDS Junior Past President.  Dr, Jindal has recently been elected as the incoming Division I Delegate-Elect / Director Elect 2017 continuing as Division I Delegate / Director 2018-2019. IEEE Division I consists of five IEEE OUs including Circuits and Systems Society (CASS), Council for Electronic Design Automation. Electron Devices Society (EDS), Nanotechnology Council (NTC) and Solid-State Circuits Society (SSCS).

Bookings

Bookings are closed for this event.

Top